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CHALLENGE OF HETEROGENEITY IN MAJOR DEPRESSION CLINICAL TRIALS
Clinical trials for central nervous system (CNS) disorders like major depressive disorder (MDD) 
grapple with heterogeneous patient populations, making it challenging to identify effective 
therapies with predictive biomarkers to optimize treatment outcomes. Traditional machine 
learning (ML) methods often fail to capture the combinatorial complexity of variable interactions 
in such diverse datasets, leading to inadequate predictive models.
AIM
Introduce a novel analytical approach to deconstruct the patient population into explainable and 
unexplainable subpopulations.
METHODOLOGICAL ISSUE BEING ADDRESSED
Deconstructing heterogeneous patient population data to enhance predictive modeling and 
patient stratification to advance personalized medicine in CNS disorders.

INTRODUCTION

DATASET
CAN-BIND trial exploratory escitalopram drug arm (n=172) with MDD patients.

Primary Outcome: ≥50% reduction in MADRS scores from baseline over 8 weeks. 

Data Types: Over 362 variables per patient including clinical scales: CGI, SEXFX, DARS, SHAPS, 
MINI, MADRS, BRIAN, YMRS, QIDS, QLESQ, PSQI, and SPAQ and over 20,000 genetic methylation 
variables. 

MACHINE LEARNING APPROACH
Traditional ML Models: Several ML methods were chosen to augment with this novel 
mathematically augmented ML, but we report on the best performing methods which included 
Logistic regression with lasso feature selection, Random Forest, XGBoost, support vector machine 
(SVM), and neural networks. Binary classification (response vs non-response) was applied to 
(80%) training and testing (20%) + cross validation. 
Novel ML Model: Uses Sub-Insight Learning, powered by dynamical systems and  novel attention 
mechanisms to deconstruct patient populations into explainable and unexplainable 
subpopulations, significantly reducing computational complexity and identifying causal clusters 
of variables. This approach introduces a semi-supervised learning framework by adding an 
unknown class to account for uncertain outcomes, transforming the problem into a multiclass 
classification task.

METHODS

CONCLUSIONS AND SIGNIFICANCE

RESULTS

Traditional ML Performance Before Using Novel ML (Scale Data 
Only)

• Feature Selection Methods Used:

• LASSO

• Filter and Wrapper Methods

• ANOVA F-Statistic: 10, 15, and 20 features

• SHAP

Best Traditional ML Model: XGBoost (ANOVA F-Statistic with 20 
features)

Traditional ML Model Performance Alone vs with Novel ML Using Clinical Scale Data

Obtaining patients for clinical trials is expensive, frequently resulting in small datasets. The focus on AI in recent years has made it clear that massive data sets with many samples 
are required, but there remains a need to discover how to use these advancements to improve clinical trials. A novel mathematical innovation was discovered to improve the 
ability for ML to learn from smaller data sets by discovering high effect size subpopulations and the precise driving variables to train reliable models. This sub-insight learning 
approach demonstrates this capability and shows utility in analyzing heterogeneous datasets in CNS clinical trials. By decomposing patient populations into explainable subgroups 
and focusing on key predictive variables, this novel approach enhances model performance, underscoring its potential to revolutionize data analysis in MDD clinical trials, and can 
lead to more accurate treatment response, improved patient stratification, and optimized inclusion/exclusion criteria, advancing personalized medicine in CNS disorders.
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Key variables identified by the 
algorithm guide the refinement 
of inclusion/exclusion criteria 
and reduced feature sets for the 
models.

Heterogeneous Patient Population

Unknown Class (Unexplainable)

Favourable explainable outcomes
E.g., escitalopram responders.

Unfavourable explainable outcomes
E.g., escitalopram non-responders.

The “Good”

+

The “Bad”

+

Explainable Patients

After Applying Sub-Insight Learning:

• Accuracy improved by ~28%, with some models achieving up to 100%.

• Sensitivity increased by ~31%, enhancing the detection of true positives.

• Specificity improved by ~51%, reducing false-positive rates.

• F1-score increased by ~30%, indicating balance between precision and recall.

• Medan AUC rose by ~39%, with values approaching 0.99.

Sub-Insight Learning enhanced the performance of all evaluated ML models, and was 
most pronounced in the SVM model. Adding the “unknown class” allowed models to 
better manage data uncertainty, and the reduced feature sets minimized overfitting. 
However, up to 70% of the population was poorly characterized in some instances, with 
the remaining 30% characterizable and robustly predicted. This is the trade-off for 
small populations, as found in clinical trials, that can be made to extract insights that 
can be used to influence subsequent trials.

Metric Value
Accuracy (%) 65.71
Accuracy 5-Fold CV (% ± SD) 61.43 ± 6.09
Accuracy 10-Fold CV (% ± SD) 56.76 ± 10.36
Accuracy LOO CV (% ± SD) 54.39 ± 49.81

Traditional ML models yielded poor to moderate performance, with 
accuracy scores ranging from 55.8% to 65.71% and mean area under 
the curve (AUC) values between 0.49 and 0.68. These models 
exhibited limitations in handling the heterogeneity of the dataset, 
leading to lower specificity and sensitivity.

Traditional ML Model Performance Alone vs with Novel ML Using Methylation Data

Model Accuracy Before Novel ML 
(%) Accuracy After Novel ML (%) Improvement (%)

Logistic Regression 54.29 77.14 +22.85
XGBoost 65.71 91.43 +25.72
Random Forest 62.86 82.86 +20.00
SVM 60.00 100.00 +40.00
Neural Network 60.00 77.14 +17.14

Comparative analysis of the XGBoost classifier’s performance on methylation data before and after integrating the Sub-Insight Learning ML approach into the 
modeling process with key metrics: accuracy, F1 score, sensitivity, specificity, and cross-validation scores.

Cross-
Validation Before Novel ML (%) After Novel ML (%) Improvement 

(%)

Accuracy
Improvement

1-fold CV 62.86 100.00 +37.14
5-fold CV 65.66 97.95 +32.29
10-fold CV 66.32 98.00 +31.68

Sensitivity
Improvement

1-fold CV 87.50 100.00 +12.50
5-fold CV 87.50 98.63 +11.13
10-fold CV 87.50 98.67 +11.17

Specificity
Improvement

1-fold CV 9.09 100.00 +90.91
5-fold CV 9.09 91.55 +82.46
10-fold CV 9.09 82.02 +72.93

ROC Curves Before Sub-Insight Learning ROC Curves After Sub-Insight Learning

After integrating Sub-Insight Learning, the XGBoost classifier’s accuracy increased across all cross-validation methods, sensitivity improved by ~11-13%, and 
specificity improved by 73-91%, suggesting a more balanced model effectively reducing false positives and false negatives. While 50% of patients were not 
classifiable, the insights from the resulting explainable subpopulations was able to significantly alter the p-value for the corresponding trial simulations.
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